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Abstract: This paper introduces the Continuity Moderate Resolution Imaging Spectroradiometer
(MODIS)-Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Mask (MVCM), a cloud detection
algorithm designed to facilitate continuity in cloud detection between the MODIS (Moderate
Resolution Imaging Spectroradiometer) on the Aqua and Terra platforms and the series of VIIRS
(Visible Infrared Imaging Radiometer Suite) instruments, beginning with the Soumi National
Polar-orbiting Partnership (SNPP) spacecraft. It is based on the MODIS cloud mask that has been
operating since 2000 with the launch of the Terra spacecraft (MOD35) and continuing in 2002 with
Aqua (MYD35). The MVCM makes use of fourteen spectral bands that are common to both MODIS
and VIIRS so as to create consistent cloud detection between the two instruments and across the
years 2000-2020 and beyond. Through comparison data sets, including collocated Aqua MODIS
and Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) from the A-Train, this study was
designed to assign statistical consistency benchmarks between the MYD35 and MVCM cloud masks.
It is shown that the MVCM produces consistent cloud detection results between Aqua MODIS,
SNPP VIIRS, and NOAA-20 VIIRS and that the quality is comparable to the standard Aqua MODIS
cloud mask. Globally, comparisons with collocated CALIOP lidar show combined clear and cloudy
sky hit rates of 88.2%, 87.5%, 86.8%, and 86.8% for MYD35, MVCM Aqua MODIS, MVCM SNPP
VIIRS, and MVCM NOAA-20 VIIRS, respectively, for June through until August, 2018. For the same
months and in the same order for 60S-60N, hit rates are 90.7%, 90.5%, 90.1%, and 90.3%. From the
time series constructed from gridded daily means of 60S-60N cloud fractions, we found that the
mean day-to-day cloud fraction differences/standard deviations in percent to be 0.68/0.55, 0.94/0.64,
—0.20/0.50, and 0.44/0.82 for MVCM Aqua MODIS-MVCM SNPP VIIRS day and night, and MVCM
NOAA-20 VIIRS-MVCM SNPP VIIRS day and night, respectively. It is seen that the MODIS and
VIIRS 1.38 pm cirrus detection bands perform similarly but with MODIS detecting slightly more
clouds in the middle to high levels of the troposphere and the VIIRS detecting more in the upper
troposphere above 16 km. In the Arcticc MVCM Aqua MODIS and SNPP VIIRS reported cloud
fraction differences of 0-3% during the mid-summer season and —3-4% during the mid-winter.

Keywords: cloud detection; MODIS; VIIRS

1. Introduction

Discrimination between the clear and cloudy pixels is a crucial first step in most satellite data
applications. Retrieval algorithms, such as atmospheric correction, aerosol properties, or sea-surface
temperature (SST), require observations without clouds. On the other hand, cloud property algorithms,
such as optical depth, cloud particle size, or cloud thermodynamic phase, need cloudy fields of view
(FOVs) that ideally are devoid of clear skies. Many cloud detection schemes have been proposed in
the meteorological satellite era [1], some appropriate for very specific regions such as the Atacama
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Desert [2] or the Himalayan region [3], others for specific uses like SST generation [4] or vegetation
properties [5]. Other methods were designed for global use and more general purposes such as Earth
radiation budget studies [6] or cloud properties such as frequency, height, and radiative forcing [7].
Some masks, such as in the International Satellite Cloud Climatology Project (ISCCP) [8] or the Clouds
from Advanced Very High Resolution Radiometer (AVHRR) Extended (CLAVR-x) [9,10] have been
applied to instruments on both polar orbiting and geostationary platforms [11].

The Continuity Moderate Resolution Imaging Spectroradiometer (MODIS)-Visible Infrared
Imaging Radiometer Suite (VIIRS) Cloud Mask (MVCM) derives from a cloud detection algorithm
applied to combined solar and infrared imager and sounder data from a polar orbiting satellite. In the
1990s, a multi-spectral thresholding cloud mask was developed for combined Advanced Very High
Resolution Radiometer (AVHRR) and High-resolution Infrared Radiation Sounder (HIRS) data [7].
A similar, but spectrally expanded cloud mask using “fuzzy” logic to implement spectral cloud
test thresholds (MxD35) was created to operate on Moderate Resolution Imaging Spectroradiometer
(MODIS) radiances [12]. Here, we used “MxD35” to indicate the general MODIS cloud mask algorithm,
i.e., MYD35 (Aqua) or MOD35 (Terra). Details of the MxD35 algorithm, the implementation of fuzzy
logic, the combination of the various spectral tests, and the history of its development may be found
in [12,13]. Since 2000, this algorithm and its later improved versions have been in continuous operation
in the MODIS Adaptive Processing System (MODAPS) located at NASA Goddard Space Flight Center,
creating cloud detection data for Terra and Aqua MODIS. The MVCM is derived directly from Collection
6 of the MxD35 algorithm and is designed to facilitate continuity in cloud detection between MODIS
on the Aqua and Terra platforms and the series of Visible Infrared Imaging Radiometer Suite (VIIRS)
instruments, beginning with the Soumi National Polar-orbiting Partnership (SNPP) spacecraft. Global
Terra and Aqua MODIS cloud products, including cloud fraction (CF), have been available from early
2000 until present and are expected to continue until 2026. The VIIRS data begin in early 2012 and will
potentially be available until 2040 on various satellite platforms. Together, these instruments constitute
a 40 year record of satellite ocean, land and atmosphere measurements, including clouds. In this paper,
we determined the degree to which the MVCM Aqua MODIS, SNPP VIIRS, and NOAA-20 VIIRS are
consistent with each other and with MYD35, recognizing that improvements will continue to be made
and the reprocessing of the various MVCM output data sets will be performed. Statistics shown in the
paper will be used as benchmarks for these improvement efforts.

2. Materials and Methods

MODIS instruments measure upwelling radiation from the earth-atmosphere system in 36 spectral
bands [14], while the VIIRS has a subset of these in 20 bands plus a day/night visible channel [15].
To promote continuity [16], the MVCM utilizes only those channels that are common to both instruments
(see Table 1). MODIS band 21 (3.96 um) has no corresponding band on the VIIRS. Since the 4 pm
spectral region is important for both day and night cloud detection and MODIS cloud test thresholds
have been carefully selected and adjusted over the years, it was decided to keep this band for MODIS
and to develop separate VIIRS thresholds using M12 (3.75 um). Pixel by pixel clear sky vs. cloudy sky
discrimination was accomplished using the same “fuzzy logic” methodology as in the MODIS cloud
mask [12]. Nominal spatial resolution of the MVCM L2 product is 1 km for MODIS and 750 m for
VIIRS. The MVCM is capable of processing both MODIS and VIIRS inputs; in this document, we refer
to the VIIRS output from the algorithm as “MVCM VIIRS” and the MODIS output as “MVCM Aqua
MODIS”. Terra MODIS outputs have not yet been produced by the MVCM.



Remote Sens. 2020, 12, 3334 30f18

Table 1. Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging
Radiometer Suite (VIIRS) spectral bands used in the MVCM.

Spectral Bands Used in the MODIS-VIIRS Cloud Mask (MVCM)

MODIS Wavelengths (um)  MODIS Band VIIRS Band Primary Use

0.412 8 M1 daytime desert cloud detection
0.443 9 M2 sun glint clear sky detection
0.555 4 M4 snow/ice detection
0.645 1 M5 land surface cloud detection
0.859 2 M7 water surface cloud detection

1.24 5 M8 turbid water clear sky detection

1.375 26 M9 transmissive cirrus cloud detection

1.64 6 M10 snow/ice detection, water surface cloud detection
2.13 7 Mi11 snow/ice detection, water surface cloud detection
3.75 20 M12 land and water surface cloud detection (VIIRS)
3.96 21 not used land and water surface cloud detection (MODIS)
8.55 29 M14 water surface ice cloud detection

11.03 31 M15 night land and water surface cloud detection
12.02 32 Mié6 transmissive cirrus cloud detection

Clouds are generally brighter and colder than their underlying surfaces. Therefore, during daylight
hours a majority of clouds are discernable by the use of visible and near infrared (VNIR) reflectances
along with long wave infrared (LWIR) measurements (here we use LWIR to denote the atmospheric
window region from 8 to 12 um). At night, the LWIR brightness temperatures are sufficient for the
detection of most middle and high-altitude clouds. However, it is in areas with reduced LWIR contrast
at night (e.g., oceanic low altitude clouds, polar night) that infrared measurements in atmospheric gas
absorbing spectral regions become important for cloud detection. Fewer of these spectral observations
on the VIIRS instrument compared to the MODIS accounts for most of the differences between the
MVCM and MxD35 algorithms.

The most important atmospheric absorption bands for MODIS cloud detection that are not
included on the VIIRS are the water vapor absorption channels at 6.7 and 7.3 um. These, in addition
to the CO, absorption band at 13.3 pm play a significant role in the detection of clear skies in polar
night conditions [17]. These “clear sky restoral” tests are performed to find unambiguously clear
pixels for certain scene types and are not strictly part of the “fuzzy logic” algorithm [12]. In addition,
MODIS bands at 17 and 18 in the 0.9 um water vapor absorption band are used in clear sky restoral
tests for sun glint conditions. Table 2 shows MODIS spectral bands and cloud tests used in MxD35 that
are not found in the MVCM.

Table 2. Spectral bands and uses in MxD35 that are not part of the MVCM. BT and BTD represent the
brightness temperature and brightness temperature difference, respectively.

MODIS Spectral Cloud and Clear Sky Tests Not Found in the MVCM

Wavelengths (um) MODIS Band Use in MxD35
0.905 17 Clear sky detection in sun glint conditions (0.905/0.936 um)
0.936 18 Clear sky detection in sun glint conditions (0.905/0.936 um)

Global high cloud BT threshold test; clear sky detection in

6.7 2 polar night conditions (6.7-11 pum BTD)
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Table 2. Cont.

MODIS Spectral Cloud and Clear Sky Tests Not Found in the MVCM
Wavelengths (um) MODIS Band Use in MxD35

Nighttime middle cloud detection over land, polar night cloud
7.3 28 detection, polar night clear sky detection (7.3-11 um BTD);
nighttime ocean low cloud detection (8.6-7.3 um BTD)

13.3 33 Clear sky detection in polar night conditions (13.3-11 um BTD)
13.9 35 Mid-latitude (605-60N) high cloud BT threshold test

In an attempt to mitigate the loss of information due to a lack of absorption bands seen in Table 2,
and to take advantage of new algorithm development, there are several new features in the MVCM
that are currently not found in the MxD35 algorithm.

2.1. 6/2.1 um Ocean Day Threshold Test

A new a threshold test employs reflectances from the 1.6 um (VIIRS and Terra MODIS) and 2.1 pm
(Aqua MODIS) bands to better detect water phase clouds over daytime water surfaces. The 2.1 pm band
is substituted for 1.6 um on Aqua because the performance of the majority of detectors is irreversibly
compromised [18]. The very dark ocean background in these spectral bands is especially helpful for
thin clouds, partially cloud-filled pixels, and cloud edges. How this test, and all the various spectral
cloud tests are combined to create the final confidence of clear sky can be found in [12,13].

2.2. Turbid Water Test

A new turbid water clear sky test has been implemented for shallow waters and follows the
method of Chen and Zhang [19]. Bottom and suspended sediments in near-shore waters can have
strong reflectance signals in VNIR bands and result in false cloud determinations. Reflectance standard
deviations at 2.1 um are calculated over 3 X 3 pixel regions centered on the pixels of interest. Pixels in
regions with smaller standard deviations than the threshold value are labeled as clear.

2.3. Test for Snow Cover over Vegetated Regions

An addition to the normalized difference snow index (NDSI) test has been added, following
Klein et al. [20]. For vegetated scenes where the NDSI is lower than expected for snow cover, a normalized
difference vegetation index (NDVI) value is compared to a threshold that is itself a function of the NDSI.
If the NDVI is less than the calculated threshold, snow cover is assumed.

2.4. New Test Thresholds in the MVCM

A general strategy for transitioning cloud tests from MxD35 to the MVCM was to fine tune
thresholds, i.e., tune the tests such that they detect as many clouds as possible without greatly increasing
false positives. Where possible, this was done in order to account for lesser amounts of information in
the VIIRS suite of spectral measurements. The following changes were made to the MVCM cloud test
thresholds as compared to MxD35.

2.5. Daytime Land 1.38 um Cirrus Test

These thresholds were lowered from {0.040, 0.035, 0.030} to {0.0375, 0.0250, 0.0125} for low, middle,

and high confidence of clear sky, respectively.

2.6. Daytime Water 0.86, 1.6/2.1, and 1.38 um Thresholds
In the MVCM, these thresholds are functions of solar zenith angle (SZA) in the following form:

thr = coeff[0] + coeff[1]*sza + coeff[2]*sza’ + coeff[3]*sza> + ..., 1
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where thr is the high confidence clear sky threshold and sza is the solar zenith angle. The middle and
low confidence thresholds are calculated as offsets from thr. There are separate coefficients for MODIS
and VIIRS and both were taken from collocated imager reflectances and CALIOP (Cloud-Aerosol Lidar
with Orthogonal Polarization) lidar data [21] where the CALIOP cloud product [22] served as the
“truth” for clear vs. cloudy skies. The thresholds are further defined according to the viewing zenith
angle (VZA) in the following form:

thry,, = thr * (1.0/cos(vza)’), ()

where p =0.75 for VIIRS and 0.50 for MODIS (0.86 and 1.38 um tests). The value of p for the VIIRS 1.6 pm
is test is 0.25; no VZA adjustment is used for MODIS Aqua (2.1 um). Additional upward adjustments
are made for the 1.38 um thresholds beyond 45 degrees SZA (maximum of 0.02 at 90 degrees SZA).
Very low values of atmospheric moisture in these regions make adjustments mandatory. This test will
need monitoring because of the future possibility of more open water at polar latitudes.

MVCM granule (Level 2) and aggregated MVCM (Level 3) data were obtained from the
NASA Atmosphere Science Investigator-Led Processing Systems (ASIPS) at the University of
Wisconsin-Madison [23]. The ASIPS is responsible for maintaining the MVCM algorithm and creating
the MVCM product. The entire record of Level 2 and Level 3 MVCM Aqua MODIS, SNPP VIIRS,
and NOAA-20 VIIRS mask data (March 2012—present) has been generated and delivered to the NASA
Level-1 and Atmosphere Archive and Distribution System (LAADS) Distributed Active Archive Center
(DAAC) for public distribution. MODIS cloud mask (MYD35) data are also available from the LAADS
DAAC and collocated CALIOP lidar and MVCM observations were obtained from the ASIPS and are
available upon request.

3. Results

3.1. An Example Aqua MODIS Scene

Figure 1 shows an example output from the MVCM Aqua MODIS. The data are from 4 August,
2019 at 09:15 UTC. The bounding coordinates (latitude, longitude) for this 5 min granule are, clockwise
from top left: (-7.86, 76.98), (—10.89, 55.94), (7.05, 52.22), and (10.07, 73.22); however, only about
50% of the latitudinal extent of the granule is pictured here. Lines of equal latitude and longitude in
5° increments are shown. Note that Aqua was in ascending node at this time, with north shown at the
bottom and east at the right, in proper time order that the data were taken. This places the scene in the
equatorial Atlantic Ocean during daylight hours. Much of the scene is in the geometric sunglint region,
defined as up to 40° from the specular reflection point.

Panels (a) and (b) show 0.86 um and 1.38 um reflectances, respectively, while Panel (c) shows the
basic MVCM output comprised of four possible classes: clear (shown in green), probably clear (blue),
probably cloudy (red), and cloudy (white). The inherent uncertainties of VNIR cloudy vs. clear sky
thresholds account for much of the red (probably cloudy) and blue (probably clear) decisions seen.
Three spectral cloud tests are show in Panels d—f: 1.38, 1.6, and 8.6 pm, respectively. The 1.6 um test (d)
is new in the MVCM, as are the 1.38 um test thresholds, as noted above. The 8.6 um test (f) is performed
in both day and night conditions but is obviously not as sensitive to thin cirrus as is the 1.38 um test.
Highly sensitive cloud tests during daylight hours as well as more cloud tests in general, explain the
more robust daytime detection statistics seen in the results below. See [13] for detailed explanations of
the various cloud tests using the bands listed in Table 1 and examples of day and night mask output.
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Figure 1. Example MVCM Aqua MODIS output from 04 August, 2019 at 09:15 UTC; (a) MODIS 0.86 um
reflectance; (b) MODIS 1.38 um reflectance; (c) representation of final output cloud mask; (d) results of
the 1.38 um cloud test; (e) results of the 1.6 um cloud test; (f) results of the 8.6 um cloud test.
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3.2. Comparisons to CALIOP Lidar

Table 3 shows the overall hit rates (combined cloud and clear sky agreement, see Equation
(3)) when MYD35 C6.1 (“M35” in Table 3, MVCM Aqua MODIS, MVCM SNPP VIIRS, and MVCM
NOAA-20 VIIRS are compared to the collocated 1 km resolution CALIOP lidar cloud detection [24],
here considered to be “truth”. Overall hit rates in Table 3 are calculated as

OvHR = [(n(tp) + n(tn)/n(total)] * 100.0, 3)

where OvHR is overall hit rate in percent, n(tp) is the number of pixels where the CALIOP and cloud
mask agreed the scene was cloudy (“true positives”), n(tn) is the number of pixels where CALIOP and
cloud mask agreed that a scene was clear (“true negatives”), and n(total) is the total number of pixels
analyzed. Time coverage is June-August (JJA), 2018 (left hand side, and December 2017-February
(DJF), 2018 (right hand side. A maximum of 5 minutes was allowed between CALIOP and the imager
observations. In the comparisons, only completely clear and completely cloudy 1 km CALIOP data
were considered. The authors considered CALIOP cloud detection to be the best option for validating
passive imager cloud masks. Though certainly not perfect, it provides global, high quality cloud
screening during both day and night. Since it is capable of detecting very optically thin clouds, it also
provides a severe test of cloud masks derived from passive sensors. Several drawbacks are that CALIOP
is nadir viewing only, never views significant sunglint, and its footprint is only 80 meters wide while
that of the imagers in this study are 750 meters (VIIRS) to 1000 meters (MODIS). However, the extreme
sensitivity to clouds compared to MODIS and VIIRS and the global nature of the observations easily
outweigh these disadvantages.

Globally, MVCM Aqua MODIS < MYD35 by 0.7% in JJA and 1.5% in DJE, where the latter
difference comes primarily from polar night conditions. Lack of IR absorbing channels in the MVCM
algorithm (consistent with VIIRS) account for this difference. Agreement discrepancies are smaller
for 60S-60N overall. In other 60S-60N categories, the MYD35 vs. MVCM Aqua MODIS differences
are generally < 1% (except the water day in DJF) and MVCM Aqua MODIS exceeds MYD35 in some
scene types. Globally, the MVCM VIIRS (SNPP and NOAA-20) < MVCM Aqua MODIS. Generally,
MVCM VIIRS < MVCM MODIS except for water day, land and desert night, and polar night. It is not
yet clear what causes lower agreements to CALIOP for MVCM VIIRS. Larger view angle differences,
calibration differences, smaller numbers of collocations, as well as suboptimal cloud test thresholds are
all suspects. Note that statistics do not include December 2017 for NOAA-20 VIIRS (shown in Table 3
as JF) as the instrument was not yet operational at that time.

Calculations of the Student’s T-Test statistic for global and 60S-60N categories indicate that
differences between MYD35 and MVCM Aqua MODIS hit rates are statistically significant at p = 0.05
except for 605-60N during JJA. Significant differences are not unexpected given that more information
about clear vs. cloudy skies is available to MYD35. However, when most snow and ice are removed
from consideration (60S-60N during JJA), the differences become insignificant. MVCM SNPP and
NOAA-20 VIIRS hit rate differences that are not statistically significant because the inputs and cloud
test thresholds are very similar. MVCM Aqua MODIS and MVCM SNPP VIIRS hit rate differences are
significant, both globally and from 60S-60N latitude, during JJA but not for DJE. The interpretation
here is less clear; perhaps it indicates that the SNPP VIIRS thresholds are less than optimal for some
regions or scene types as noted above. From Table 3, one notices a rather large hit rate difference
between these two for the global day in JJA but beyond that, inferences are not obvious.
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Table 3. Cloud detection hit rates of MYD35 and MVCM compared to the Cloud-Aerosol LIdar with
Orthogonal Polarization (CALIOP) lidar.

MYD35 and MVCM vs. CALIOP Cloud Detection

JJA 2018 Hit Rates (%) DJF 20172018 Hit Rates (%)
Scene Type MVCMAqua MVCMSNPP MVEM MVCMAqua MVCMSNPP MVCM
M35 Mobis viiRg ~ NOAA20 M35 yiopis VIIRS NOAA-20
VIIRS VIIRS (JF)
Global 88.2 87.5 86.8 86.8 88.1 86.6 86.3 86.5
60S-60N 90.7 90.5 90.1 90.3 90.1 89.7 89.6 89.5
Global Day 91.1 90.5 89.3 89.2 90.6 89.9 89.4 89.0
Global Night ~ 85.6 84.7 84.5 84.6 85.9 837 83.6 843
60S-60N Day  91.0 90.6 90.2 90.3 90.8 90.2 90.3 90.0
60S-60N Night ~ 90.3 90.5 90.0 90.3 89.4 89.2 88.9 88.9
60S-60N Water 4, , 90.6 90.4 90.6 9.3 91.0 91.5 913
Day
605-60N Water 4 ; 90.1 89.6 89.7 90.7 90.6 903 89.5
Night
605-60NTand 4, 90.4 89.7 89.4 86.6 87.8 86.8 86.3
Day
605-60N Land 4 917 90.8 919 86.0 853 85.6 87.6
Night
60S-60N Desert ¢, 91.3 90.4 91.0 85.7 86.7 85.5 845
Day
605‘605 tDese” 90.6 91.0 90.4 919 835 84.1 85.0 86.3
Polar Day 91.2 90.3 87.3 86.8 90.2 89.4 87.4 86.3
Polar Night 769 735 739 737 79.7 74.2 74.6 76.5

3.3. Comparisons of the MVCM between Aqua MODIS, SNPP VIIRS, and NOAA-20 VIIRS

In this section, we inspect the continuity of cloud detection through comparisons of equal-angle
1° latitude/longitude mean daytime CFs from MVCM Aqua MODIS and SNPP VIIRS. Figure 2a,b show
the global maps of mean MVCM MODIS and VIIRS CFs, respectively, from the month of July over the
years 2013-2019, while Figure 2¢,d detail MODIS minus VIIRS CFs for the months of July and January,
respectively, from 2013 to 2019. Figure 2a,b clearly show the same large-scale cloud features with
heavy cloud cover along the Intertropical Convergence Zone (ITCZ), in the subtropical stratus regimes
west of California, S. America, and Africa, and in oceanic regions of both hemispheres poleward of
30° latitude. Areas of little cloud cover are seen in the western U.S., central South America, Northern
and Southern Africa, and Australia. Smaller-scale features also agree, like the cloud-free area west of
Madagascar and the shapes of the cloudy regions in the oceanic stratus regimes (darker red shades).
Figure 2¢,d show the MVCM Aqua MODIS minus SNPP VIIRS CF differences in percent. The most
apparent disparities in the oceanic regions are the two bands of higher cloudiness seen in the SH in
July and in the NH in January (yellow color). Larger positive differences (red) are seen in snow- and
ice-covered areas in both months, while negative discrepancies (blue) are seen in some arid regions of
North Africa, the Arabian Peninsula, and central Asia.
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(a) July MVCM Aqua MODIS Day CF (%) (b) July MVCM SNPP VIIRS Day CF (%)

—135 —50 0 45 30 135

—50 =45 0 45 90 135

—135

(c) July Difference between MVCM Aqua MODIS  (d) January Difference between MVCM Aqua MODIS
and SNPP VIIRS Day CF (%) and SNPP VIIRS Day CF (%)

Figure 2. MVCM cloud fractions (CFs) and differences from January and July 2013-2019; (a) monthly
mean daytime MVCM Aqua MODIS CFs for July; (b) monthly mean daytime MVCM SNPP VIIRS
CFs for July; (c) daytime July CF differences between MVCM Aqua MODIS and MVCM SNPP VIIRS;
(d) daytime January CF differences between MVCM Aqua MODIS and MVCM SNPP VIIRS.

Figure 3 shows the time series of MVCM Aqua MODIS and MVCM SNPP VIIRS CFs. Panels a and
b illustrate 60S to 60N daily mean CFs from 2013 to 2019 for day and night, respectively. MODIS and
VIIRS track one another closely with MODIS CFs slightly larger for the vast majority of days. This is
expected because of the larger instantaneous field of view (IFOV) of the MODIS (1 km at nadir, [14])
compared to the VIIRS (750 m) [15]. Panels ¢ and d show MODIS minus VIIRS CFs for the same
regions and time period. Means of the daytime differences range from about one-half percent at
the beginning of the period to about one percent by 2020, while the nighttime values have a bias of
approximately 1% across the time period. Ninety percent of the daily mean daytime CF differences
lie between —0.3% and 1.6%. For the nighttime, the range is from —0.1% to 2.1%. The decrease in
daytime SNPP VIIRS CF (increase in Aqua MODIS minus SNPP VIIRS) is related to changing the
calibration characteristics of visible and near infrared (NIR) channels between the SNPP VIIRS and
Aqua MODIS. Meyer et al. [25] showed a consistent decrease in the SNPP VIIRS M5 (0.65 pm) and M7
(0.86 pm)-calibrated reflectances relative to the corresponding MODIS Aqua spectral bands (1 and
2, respectively) beginning in 2016. VIIRS M5 is relied on for cloud detection over vegetated surfaces
and M7 over water surfaces in the MVCM algorithm (see Table 1). A majority of the positive change
seen in Figure 3c is over oceans, due to a greater sensitivity to clouds over dark water surfaces than
over brighter and more variable land surfaces. Panels e and f (day and night, respectively) show cloud
fraction differences between SNPP and NOAA-20 VIIRS over the calendar years 2018-2019 from the6
0S-60N latitude. The differences are small and stable over time, with 90% of the daytime differences
lying between —0.9 and 0.4%. Similar nighttime values range from —0.4% to 1.1%.
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NOAA-20 VIIRS minus SNPP VIIRS Cloud Fractions (%)
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Figure 3. MVCM MODIS and VIIRS time series statistics (60S—60N); (a) daily mean daytime cloud
fractions (CFs) for MVCM Aqua MODIS (blue) and MVCM SNPP VIIRS (red); (b) daily mean nighttime
CFs for MVCM Aqua MODIS (blue) and MVCM SNPP VIIRS (red); (c) daytime CF differences
between MVCM Aqua MODIS and MVCM SNPP VIIRS, (d) nighttime CF differences between MVCM
Aqua MODIS and MVCM SNPP VIIRS; (e) daytime CF differences between MVCM SNPP VIIRS
and MVCM NOAA-20 VIIRS; (f) nighttime CF differences between MVCM SNPP VIIRS and MVCM
NOAA-20 VIIRS.

Table 4 shows mean values of day-to-day cloud fraction differences and variabilities between
the three MVCM algorithms (Aqua MODIS minus SNPP VIIRS, NOAA-20 VIIRS minus SNPP VIIRS)
and for several scene types between 60S to 60N latitude. Day and night values for the entire zonal
bands are in bold type at the beginning of the Table 4. Differences are taken between aggregations of
pixel- and area-weighted daily mean 1° cloud fractions. Differences between Aqua MODIS and SNPP
VIIRS are from 2013 to 2019, while those between NOAA-20 and SNPP VIIRS are from 2018 to 2019.
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Overall, the differences of daily means average < 1.0% between Aqua MODIS and SNPP VIIRS over
the seven years from 2013 to 2019, and <0.5% between SNPP and NOAA-20 VIIRS from 2018 to 2019.
Perhaps more importantly, standard deviations of the differences are also < 1% overall from 605-60N.
Hemispheric differences for land and water surfaces are listed in non-bolded values in the remainder
of Table 4.

Table 4. Mean and variabilities of day-to-day cloud fraction differences between the MVCM algorithms
(Aqua MODIS, SNPP VIIRS, NOAA-20 VIIRS) Bolded values are for entire 60S—60N latitude bands.

Algorithm Comparison Mean Diff. (%) Std. Dev. (%) Time Period
MODIS—SNPP VIIRS 60S-60N Day 0.68 0.55 2013-2019
MODIS—SNPP VIIRS 60S-60N Night 0.94 0.64 2013-2019
N20 VIIRS—SNPP VIIRS 60S-60N Day —-0.20 0.50 2018-2019
N20 VIIRS—SNPP VIIRS 60S-60N Night 0.44 0.82 2018-2019
MODIS—SNPP VIIRS 0-60N Ocean Day 0.66 1.28 2013-2019
MODIS—SNPP VIIRS 0-60N Ocean Night 1.28 0.78 2013-2019
MODIS—SNPP VIIRS 0-60S Ocean Day 1.47 1.17 2013-2019
MODIS—SNPP VIIRS 0-60S Ocean Night 1.27 0.57 2013-2019
MODIS—SNPP VIIRS 0-60N Land Day —-0.56 1.06 2013-2019
MODIS—SNPP VIIRS 0-60N Land Night —-0.44 1.85 2013-2019
MODIS—SNPP VIIRS 0-60S Land Day -0.27 1.78 2013-2019
MODIS—SNPP VIIRS 0-60S Land Night 1.03 2.15 2013-2019
N20 VIIRS—SNPP VIIRS 0-60N Ocean Day -0.32 0.85 2018-2019
N20 VIIRS—SNPP VIIRS 0-60N Ocean Night 0.27 1.04 2018-2019
N20 VIIRS—SNPP VIIRS 0-60S Ocean Day —-0.24 0.92 2018-2019
N20 VIIRS—SNPP VIIRS 0-60S Ocean Night 0.22 0.72 2018-2019
N20 VIIRS—SNPP VIIRS 0-60N Land Day 0.04 0.81 2018-2019
N20 VIIRS—SNPP VIIRS 0-60N Land Night 1.00 1.80 2018-2019
N20 VIIRS—SNPP VIIRS 0-60S Land Day -0.19 1.58 2018-2019
N20 VIIRS—SNPP VIIRS 0-60S Land Night 0.80 1.85 2018-2019

3.4. Cirrus Detection Comparison between MODIS and VIIRS 1.38 um Channels

As is well known [26], spectral characteristics differ between the 1.38 um water vapor absorption
bands of MODIS [14] and VIIRS [27]. The response function of the MODIS band is broader than
the VIIRS. This results in the significant response from the wings of the band, allowing reflectances
from the lower and middle atmosphere to be measured by MODIS, especially in regions of low water
vapor loading. The VIIRS band is narrower, allowing relatively less reflected energy from low in the
troposphere and relatively more from upper regions (higher signal to noise), including cirrus clouds.
Figure 4 shows MVCM Aqua MODIS and MVCM SNPP VIIRS 1.38 um cloud test results (hit rates) as
a function of collocated CALIOP cloud heights for the Julys from 2013 to 2016 and 60S—60N latitude.
A “hit” is defined as a confidence of cloud > 0.5 according to the 1.38 pm cloud test (see “middle”
confidence thresholds in Section 2 above). The MVCM reports two 1.38 pm cloud test results in the
48 bits allotted for each pixel: (1) a thin cirrus test in bit 9 and (2) a more general cloud test in bit
16 that is included in the calculation of the final cloud/no cloud decision. Here, we used the more
general test results. Panel a displays the hit rates as a function of land or water surface while Panel b
shows only those observations with CALIOP cloud optical depths (COD) > 0.25. Panel a shows that
the detection rate of cirrus is about 20% higher over water for both MODIS (solid lines) and VIIRS
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(dashed lines). This is due to the fact that cloud vs. clear sky thresholds over water surfaces may be set
lower than for land surfaces due to the contrast between the cloud and the darker ocean surface. For
water surfaces, the MODIS algorithm is more successful in detecting clouds below about 7 km. This is
explained by the higher reflectances measured by the MODIS instrument in the middle troposphere
due to its lesser sensitivity to water vapor. Some clouds are not detected by the VIIRS due to water
vapor absorption in the narrower spectral band of the VIIRS. The pattern switches above about 15
km where these high and likely tropical clouds are more easily detected by VIIRS. Here, the moist,
tropical atmosphere results in a better contrast in VIIRS than MODIS between a cirrus cloud and the
background reflectance. The same pattern generally holds for land surfaces but the detection rate for
both instruments is lower due to higher surface reflectances. Panel b is similar but here only those
clouds with COD > 0.25 are considered (as measured by CALIOP). In this plot, solid lines represent all
clouds and dashed lines are “thin” clouds defined as those lidar profiles where both cloud and surface
returns were observed. Detection rates are > 0.9 for all cirrus clouds from about 7-15 km in height.
Again, MODIS is slightly more sensitive for cloud tops up to about to about 15 km where the VIIRS
then becomes more effective. The same holds for the thinner clouds but the hit rate is lower.
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Figure 4. MVCM 1.38 um cloud tests vs. CALIOP cloud detection by cloud height; (a) hit rates over
water (blue) and land (red) for MVCM Aqua MODIS (solid lines) and MVCM SNPP VIIRS (dotted lines);
(b) hit rates for all clouds (blue) and thin clouds (red) where CALIOP cloud optical depth > 0.25 for
MVCM Aqua MODIS (solid lines) and MVCM SNPP VIIRS (dotted lines).

3.5. Cloud Detection in the Arctic

Though clouds play an important role in the Arctic radiation budget [28] and are suspected of
currently undergoing changes in a climate change scenario [29], their detection and characterization by
passive remote sensors is challenging [30]. There is often little contrast in visible reflectance between
clouds and the frozen surfaces during daytime. This is exacerbated by low sun angles during spring
and fall seasons. During the polar night, there may be little contrast between cloud and surface
temperatures. In addition, this is often complicated by one or more temperature inversions in an
atmospheric column that may or may not contain clouds.

Modern radiometers like MODIS and VIIRS contain bands that are absorbing in certain NIR
wavelengths such as 1.6 and 2.1 pm (see Table 1). These bands report low reflectance over clear sky
snow and ice surfaces while water clouds are very bright, creating a good radiance contrast between
clear and cloudy skies during daylight hours. Thus, reasonably accurate cloud detection may be
accomplished between low-level water clouds and clear skies (see the polar day category in Table 3).
There is still some ambiguity, however, in detecting mixed or ice phase clouds when there is little
thermal contrast. Polar night conditions present the most challenging conditions for cloudy vs. clear
sky discrimination using passive observations (see polar night category in Table 3).
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Nevertheless, we present Arctic day and nighttime series results in this section, comparing MYD35,
MVCM Aqua MODIS and MVCM SNPP VIIRS cloud detection results. In panels a and b of Figure 5,
cloud fractions for day and night, respectively, are shown along with Aqua MODIS minus.
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Figure 5. Time series of MVCM and MYD35 cloud detection in the Arctic (60N-90N) from the period
March 2012-December 2018; (a) daytime cloud fractions (CFs) for MYD35 (gray), MVCM Aqua MODIS
(blue) and MVCM SNPP VIIRS (red); (b) nighttime CFs for MYD35 (gray), MVCM Aqua MODIS (blue)
and MVCM SNPP VIIRS (red); (c) daytime CF differences between MVCM Aqua MODIS and MVCM
SNPP VIIRS (blue lines). Red lines indicate the maximum latitude of daytime CFs recorded (scale on
the right); (d) nighttime CF differences between MVCM Aqua MODIS and MVCM SNPP VIIRS (blue
lines). Red lines show the maximum latitude of nighttime CFs (scale on the right).

SNPP VIIRS cloud fraction differences in Panels (c) and (d). The time series runs from March 2012
to December 2018 and covers the region 60-90N latitude. The MYD35 data (gray color) display higher
cloud amounts detected during both day and night. In the daytime, this is explained by the more
conservative snow detection algorithm in MYD35 than is found in the MVCM. Less snow detected
leads to more cloud found in the MYD35. The MVCM uses the same NDSI algorithm as MYD35 but
adds the Klein et al. [20] algorithm that allows more accurate snow mapping over vegetated surfaces
(see Section 2). At night, the MYD35 has the use of several water vapor absorption bands that aid in the
detection of clear skies (6.7, 7.3, and 13.3 um, see Table 2). Both day and night show a slight upward
movement in cloud fraction over this period. Panels c and d of Figure 5 show differences between
the MVCM MODIS minus the VIIRS cloud fractions. The solid red lines (scale on RHS) of these plots
show the maximum latitude of daytime (Panel a) and nighttime (Panel b) retrievals. Differences are



Remote Sens. 2020, 12, 3334 14 of 18

small (generally 0-3% and —3 to +4%) through the middle of the day and night seasons, respectively,
when geographical coverage is large (sampling from 60N-90N). During the spring and fall seasons,
when the amount of day or night is reduced (sampling is smaller), differences grow larger. Note the
asymmetry between day and night definitions, where day is defined as <= 85° SZA and night is > 85°
SZA. The maximum latitude of observations is as low as 61.5N for day and 70.5N for night.

4. Discussion

One of the greatest resources in the arena of automated cloud detection from satellite imagers
is the availability of global polar-orbiter lidar cloud data from CALIOP. Collocated CALIOP
and Aqua MODIS cloud detection data was relied on heavily for MYD35 improvements [24]
(and consequently Terra MODIS as well) and MVCM Aqua MODIS algorithm development. We also
used collocated CALIOP/SNPP VIIRS and CALIOP/NOAA-20 VIIRS for MVCM VIIRS development.
In our opinion, CALIOP data offers excellent “ground truth” data appropriate for satellite imager
cloud detection validation.

Table 3 shows how we validate the MVCM against CALIOP as well as compare MVCM Aqua
MODIS to MYD35 and MVCM VIIRS. While we feel this is a good validation strategy, there are several
issues to mention. Until September 2018, both CALIOP and Aqua flew in the A-train constellation
of satellites [31]. Since CALIOP is nadir viewing, VZAs between Aqua MODIS and CALIOP are
within approximately +20°. This is not the case for collocated CALIOP and VIIRS data from the
SNPP and NOAA-20 satellites since these are not included in the A-Train. This is a possible reason
for the consistent decrease in MVCM VIIRS hit rates relative to MVCM Aqua MODIS for global and
60S-60N data.

Both MODIS and VIIRS calibration is maintained and monitored by NASA; however, given the
MVCM is designed for climate applications and is sensitive to small differences in calibration, we have
implemented calibration offsets that are used to adjust VIIRS reflectances to be consistent with those of
MODIS Aqua. A detailed description of the methodology is provided in [25]. See also Section 2.3 of the
User Guide for the Climate Data Record Continuity Level-2 Cloud Top and Optical Properties Product
(CLDPR tOP) [32]. Bands M5 and M7 are particularly important for the stability of cloud detection
in the MVCM. VIIRS bands M5 (0.67 pm), M7 (0.87 pm), M8 (1.24 um), M10 (1.61 pm), and M11
(2.25 pm) are monitored. The ASIPS has implemented the software developed for [25] to monitor the
relative radiometry on a monthly basis. Should drifts occur that have impacts on MODIS-VIIRS cloud
data record continuity, it is expected that adjustments to the above calibration offsets (biases) will be
applied, though an exact approach for this is still under consideration [33]. Once appropriate bias
values have been developed and verified, the impacted portion of the time series of MVCM output
will be reprocessed. In the current version of the MVCM (1.1) these calibration offsets are fixed and
provided as metadata in the product netcdf4 file. An example of the need for time-monitoring of these
offsets is seen in Figure 3c. The biases used in the current MVCM are based on MODIS and VIIRS
radiance data taken from March 2012 to March 2018 [33]. However, the offsets for M5 and M7 changed
rapidly after 2016 [33] rendering the averages inappropriate after that time and the retrieved VIIRS
cloud fractions began to differ from those of Aqua MODIS.

The MODIS cloud mask and MVCM are thresholding cloud detection algorithms. Each instrument
has its own set of thresholds, allowing for differences in the spectral position and spectral responses,
that are manually generated and fine-tuned by an expert analyst. However, the setting of thresholds
is still largely subjective even when “ground truth” (e.g., CALIOP cloud data) is used to generate
initial thresholds because weights or “confidences” must be assigned to a range of possible clear vs.
cloudy boundary reflectances or brightness temperatures [12]. Along with the calibration challenges
mentioned above, this is another possible source of reduced MVCM VIIRS hit rates. We have had
approximately 20 years of MODIS cloud masking and threshold-setting experience but less than half
that for VIIRS thus far. Teasing out the exact cause(s) of the discrepancy has not been accomplished
and is a task for the future.
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Panel (a) of Figure 4 illustrates threshold-related problems inherent with use of the 1.38 pm
band for quantitative work. For example, consistent cloud detection using this test across land—water
boundaries is very difficult in an automated system. The MVCM necessarily uses separate 1.38 um
reflectance thresholds for each. The MVCM also makes use of total precipitable water estimates taken
from GDAS (Global Data Assimilation System) [34] forecast model output to remove certain pixels
from the test. The use of a 1.38 um cloud test in very dry atmospheres above deserts, middle and
high latitude wintertime surfaces, ice caps, and other high-altitude regions often results in false cloud
reports. The differences in cloud detection between MODIS and VIIRS shown in Figure 4 result from
both instrument differences and required variations in cloud test thresholds.

Figure 2c,d show bands of larger MVCM Aqua MODIS minus MVCM SNPP VIIRS CF differences
(yellow color). It has not been determined what the cause or causes are for this phenomenon.
Several possibilities have been investigated including FOV size relating to cloud morphology changes
through the seasons and the seasonal progression of observed solar scattering angles. No firm
conclusions have been drawn but some evidence has been found for the latter. This is another task for
the future that will eventually lead to more refined VNIR cloud test thresholds.

Figure 2c,d and Figure 5c,d reveal concerns about polar cloud detection consistency. MVCM
SNPP VIIRS finds fewer clouds over daytime snow and ice than does MVCM Aqua MODIS in Figure 2,
while Figure 5c shows the effect growing rapidly during times of Arctic low sun (sun near horizon
but solar zenith angles < 85°). Figure 5d shows MVCM Aqua MODIS vs. MVCM SNPP VIIRS cloud
fraction differences going in the opposite direction during Arctic twilight (sun near horizon but solar
zenith angles > 85°). These are likely caused by non-optimal threshold settings that will be addressed
in future work. As in the early development of the MODIS cloud mask, the MVCM algorithm is a work
in progress with thresholds like something of a moving target because of changing relative instrument
calibration which will be monitored and adjusted as significant trends are detected.

5. Conclusions

This study compares the quality of the MVCM to the operational Aqua MODIS cloud mask
(MYD35) as well as the consistency between the MODIS and VIIRS MVCM cloud detection algorithms.
We compared the MYD35, MVCM Aqua MODIS, MVCM SNPP VIIRS, and MVCM NOAA-20 VIIRS
cloud detection results to the CALIOP lidar, contrasted global MVCM Aqua MODIS and SNPP VIIRS
1° resolution mapped cloud fractions, showed the time series of MODIS, SNPP and NOAA-20 VIIRS
cloud fractions from MVCM processing, compared cloud detection statistics from the MODIS and
VIIRS 1.38 um cirrus detection bands, and interrogated the Arctic cloud fraction data from the four
aforementioned data sets. In addition to the maps and time series differences that show generally very
good agreement and continuity, comparisons against CALIOP observations show combined clear and
cloudy sky hit rates of 88.2%, 87.5%, 86.8%, and 86.8% for MYD35, MVCM Aqua MODIS, MVCM SNPP
VIIRS, and MVCM NOAA-20 VIIRS, respectively, for June through August, 2018. For the same months
and in the same order for 60S-60N, hit rates were 90.7%, 90.5%, 90.1%, and 90.3%. Percentages for NH
winter months are slightly lower due to the increased difficulty of cloud vs. snow and ice discrimination.
Calculations of the Student’s T-Test statistic for hit rates against CALIOP cloud detection in global and
60S—-60N categories indicate that MVCM SNPP VIIRS and MVCM NOAA-20 VIIRS are statistically
similar in both summer and winter seasons. MVCM Aqua MODIS and MVCM SNPP VIIRS in DJF fall
into this category as well, along with MVCM Aqua MODIS and MYD35 (operational Aqua MODIS
cloud mask) for JJA from 60S-60N. From time series constructed from gridded daily means of 60S-60N
cloud fractions, we find the mean day-to-day cloud fraction differences/standard deviations in percent
to be 0.68/0.55, 0.94/0.64, —0.20/0.50, and 0.44/0.82 for MVCM Aqua MODIS-MVCM SNPP VIIRS day
and night, and MVCM NOAA-20 VIIRS-MVCM SNPP VIIRS day and night, respectively. It is seen that
the MODIS and VIIRS 1.38 pum cirrus detection bands perform similarly with MODIS detecting slightly
more ice clouds in the middle to high levels of the troposphere and VIIRS detecting more in the upper
troposphere above 15 km. In the Arctic, MVCM Aqua MODIS and SNPP VIIRS reported cloud fraction
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differences of 0-3% during the mid-summer season and —3-4% during mid-winter. The elimination
of atmospheric gas absorption bands in the MVCM algorithm have the largest impact during polar
night where MYD35 hit rates vs. CALIOP lidar best those from MVCM by 3-5.5%. On the other hand,
the algorithm and/or threshold adjustments have resulted in larger hit rates for MVCM in certain scene
types: 605-60N land day, land night, desert day, and desert night (see Table 3).

Several improvements to the MVCM algorithm are planned for the near future. These include,
but are not limited to, threshold adjustments to SNPP and NOAA-20 VIIRS cloud tests, especially
for snow and ice surfaces, and a determination of the cause(s) of the daytime oceanic cloud fraction
differences seen in Figure 2.
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